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We present a mathematical model of the operation of pulsers with flexible membranes that produce effects 

typical of hydraulic shocks. Such devices are used as effective extractors, dispersers, and emulsifiers. We 

show that the dynamic behavior depends on the physical properties and the composition of the medium being 

processed. 

Facilities with a variable geometry of the working volume, shown in the schematic diagram in Fig. 1, have 

proved to be effective emulsifiers, dispersers, and extractors. They consist of chamber 1 with symmetrically 
positioned rubber membranes 2 and a connecting channel 3, whose lower part is immersed in the processed liquid 

medium 4. The side surfaces of the chamber are connected, by means of branch pipes 5, with high- (R) and low- 

(W) pressure gas vessels. The operating cycle of the facility is divided into two subcYcles of successive connection 
of the chamber to the vessels R and W; it leads to displacement of the membranes to the middle position and the 

side surfaces of the chamber, respectively. This causes oscillatory motion of the processed medium in a continuous- 
flow loop, which is accompanied by dynamic phenomena of hydraulic-shock type. 

The parameters of the flow in the connecting channel are determined by the theorem on the change in 

momentum in the form of a Lagrange-Cauchy integral, which in a one-dimensional approximation with account for 

energy losses has the form 

pSxt---dT + gz + p + p a 

v X 
+ p (X~) -~- sign (Vx) = gZ + p + p 

b 

(1) 

where the quantity I denotes the geometric combination 

xa dx 
l = f T ;  

xb 

(2) 

the subscripts a and b in (1) relate the quantities to the cross sections Xa and Xb; the subscript x indicates the need 

to obey the correspondence between v and S according to the continuity equation. The sign of the quantity Vx 

corresponds to the direction of the x axis in Fig. 1. Expressions (1) and (2) acquire an especially simple form when 
S = const. After the rubber membranes have been pressed to the inner surfaces of the chamber, the elasticity of 
the rubber will result in the inflow of an additional amount of mixture in the time 6t according to the equation 

¢5P a 
v xS xcS t = ~ Vr = Vr E ' (3) 

which is valid in the region of elastic deformation of the rubber, or in differential form 
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Fig. 1. Schematic of a pulser. 

dPa E 
d t  - V r Sxvx"  (4) 

In the case of outflow (v x < 0), the pressure Pa will decrease according to Eq. (4). 

In [I ] the following assumptions were made: a) the rubber  membranes are absolutely flexible and  do not 

respond to tension forces; then the pressures on both sides of a membrane  are identical; b) the gas routes do not 

offer substantial  resistance to the motion of gas in them. Thus ,  when the chamber  was connected both with the 

vessel R and with W, the pressure Pa was assumed to be equal to PR or Pw, respectively, and the solution of Eq. 

(1) uniquely de termined the functions Vxi = Vxi(t) when the chamber  was being filled (i ffi W) and emptied (i ffi R). 

The  calculated t ime of these subcycles was determined by the integral 

t i 

Vch = f I Sx dr. O) 
o 

The  system of equations (1), (4) made it possible to calculate shock phenomena and  the damping vibrational 

process. 

The  practice of operating individual types of such facilities caused one to abandon  the assumptions made 

in [1 ] because of the substantial resistance of the distributing gas-charging valves installed in them. If we assume 

that the gas escapes adiabatically through the valves, then the expressions for the mass flow rate of the gas G will 

have the form: 

a) when connected to the vessel R: 

( ?) 
GR ---- -- flRfR "k'-ffT_ I PRPR fiR 1 ; 

(6) 

b) when connected to the vessel W: 

( '?') 
Gw = Pwfw - ~ - ~  PmPm PW 1 ; 

(7) 

here  

f i r  = max , flW = max , (8) 
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In calculating the volume flow rates of the gas QR and Qw we can assume that the gas obeys the Clapeyron 

equation: 

Proem (9) 
Proem -- RTch" 

The sagging of a membrane is determined by the pressure differential on it [2] and, consequently, there is a 

relationship between the volume displaced by the membrane and the pressures Pa and Pmem: 

e h  
Pa =Pmem-- A ~  , 

Rmem 

(10) 

where 

t 
v =  - v _  + 0.s  f Ivxl S x a t  (11) 

o 

on connection to the vessel R and 

t 
V = V+ - 0.5 f vxSxdt (12) 

o 

on connection to the vessel W. Calculations according to [2 ] give the value of the coefficient A within the range 

0.587-0.889. Equations (10)-(12) show that the relationship between Pa and Proem changes radically in transition 

through the plane of zero membrane sagging. 

Using Eq. (9) at Tch = const, the mass conservation equation for the gas in the chamber is transformed 

into equations that determine the change in the gas pressure Proem: 

dPmem Pmem (13)  
dt  = (OR - 0.5 I vxl Sx)  Vm~,.R 

on connection of the chamber to the vessel R and 

dPmem Proem (14) 
dt  = (0"SvxSx - Qw) Vmem w 

on connection of the chamber to the vessel W. The volumes VmemR and VmemW are as follows: 

t t 
VmemR = V o + 0.5 f Iv xl S ~ t ,  VmemW = VO + V_ + V+ - 0.5 f vxS~ t .  (15) 

o o 

The relations presented here suffice to calculate the changes in the dynamic characteristics of the facility 

on its connection to the vessel R (relations (1), (5), (6), (8)-(11), (13), (15)) and to the vessel W (relations (1), 

(5), (7)-(10), (12), (14), (15)), as well as the oscillatory process connected with hydraulic shock (relations (1), 

(4)). For some facilities it is also necessary to take into account vibrational phenomena appearing after the limiting 

contact of the membranes in the middle of the chamber. Since in this case the membranes are in a limiting position, 

a subsequent decrease in the pressure in the chamber Pa relative to the working-gas pressure Proem will not cause 

displacement of the membranes. Subsequently, opposite conditions appear, i.e., Pa > Proem, which are realized in 

hundredths - thousandths  of a second and, due to the time lag of the mechanical system of the membranes, will also 

not lead to a change in their position. The more so, that the action of Pa is restricted to a narrow annular region. 

Therefore, in the case of the limiting position of the membranes only the influence of elastic deformation of the 

membrane material on the displacement of the medium in the section a - a  (see Fig. 1) must be taken into account: 
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Fig. 2. Dynamic characteristics of a pulser in the case of a degassed liquid. 

v~ dp a 
v a = kme m S x E ' d t  , 

(16) 

where kme m -< 1. When the membranes  are pressed to the side surfaces of the chamber,  kmem -- 1. An example of 

calculation of such a pulsat ing facility is p resented  in Fig. 2 (L -- 0 .75 m, H = 0 .30  m, d -- 0.1 m,  S x = 

0.785.10 -2  m 2 = const, PR = 3" 105 Pa, Pw = 0 .3 - l0  s Pa, PH = 105 Pa; the net volume of the chamber  is Vch = 

20.56. I0 -3  m 3, the volume of the rubber  membranes  is Vr = 2.95" 10 -3  m 3 and that of the gas route  is 1/0 = 

3.92- 10 -3 m 3, the effective area of the gas valves is/~M'R = PWfW -- 9.03- 10 -4  m 2, the elastic modulus of the  rubber  

is E = 5- 106 Pa, the medium is degassed water, the working gas is air, T = 293 K, kme m = 0.2 and 1.0). T h e  initial 

conditions for the subcycle "connection to R" were the conditions of complete damping of oscillations at the end of 

the subcycle "connection to W": 

v x (O)  = 0 ,  Pa(O) =Pa(O) ,  Pmem(0) = p w ,  (17) 

and the initial conditions for the subcycle "connection to W" were 

v x(O) = O, Pa(O) =Pa(O), P r o e m ( 0 )  = p R ,  (18) 

where Pa(O) is the hydrostat ic  pressure calculated from Eq. (1) for Vx ffi d v x / d t  = O. 

In Fig. 2 vibrational phenomena are represented by several periods. For the t ime being we will ref ra in  from 

commenting on the data obtained. We will only emphasize that the processed medium was assumed to be degassed,  

entirely incompressible, and "rigid," and this led to the possibility of passage of pressures to the negative region 

of values. 

At the same time there  are a number  of liquid systems that contain a certain amount  of gas dissolved in 

them a n d / o r  tend toward vapor formation on pulsation treatment.  Sometimes a technology of t rea tment  leads to 

penetrat ion of a certain amount  of gas into the chamber.  Th e  vapor-gas phase in such systems a l ready acts as a 

damping factor on the dynamics of the pulsating processes that develop in the chamber  and the connecting channel.  

For a reliable description of these phenomena in the case of a "nonrigid" processed medium, the latter must  a l ready 

be considered as two-phase with possible interphase momentum, mass, and energy transfer.  According to [3, 4 ], 

the  sys t em of equa t ions  of mot ion  for a two-phase  ba ro t rop ic  med ium in the spa t i a l ly  o n e - d i m e n s i o n a l  

approximation has the form 

0 0 
~oi 8:) + ~ ~o~ B~viS) = (M:~ - -- ~:) s a~ 

(19) 
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OV i OV i OZ Op 
Pi BiS -ffi- + Pi BiviS -~x = Pi BiGxSx -~x - BiS Ox 

-- BiT i 2argchan -- )~4ji (k~ p) v / -  vi) S + (F]i,m + Eft.f) S ,  

B i + B j =  1 ( i , . /=  1 , 2 ) .  

Numerous calculations showed [4] that under  nonuniform and unsteady-s ta te  conditions of motion the 

effect of the additional mass on the vapor-gas phase leads to a comparatively small relative "slippage" of the phases. 

Therefore ,  in a first approximation we assume 

V 1 = 1.' 2 = V, (20) 

which substantially simplifies the equation of the dynamics in system (19). Moreover, in view of the small mass 

content  of the vapor-gas phase compared to the liquid phase the equation of the dynamics can be neglected for the 

gas-vapor phase. Then  system (19) will have the form 

d 0 
O-t (01BIS)  + -~x (01BlVS) = (~r21 -- /~t12) S ,  

0 0 
B2S ) "I- ~X 092 g2vs) = (/~12 -- J~/'21) S ,  (02 O-~ 

(21) 

Ov Ov OZ Op 71 
Pl ~ + PlV-~X = PlGx Ox Ox R ' 

B! + B 2 =  1. 

Integrating Eqs. (21) over x from xb to x a (see Fig. 1), for the case S -- const we have 

Xa OB I = Xa 
f ~ dx + (BlV)a - (Blv)b f (/~t21 -- /~t12) 

Pl x b Xb 
dx , 

Xa xa 
0 (0z B2) 

dx + (to2 B2V)a - (02 B2V)b = f (/~/12 - /~t21) dx , f ot 
x b x b 

Xao  
Pl f -~-i dx  + f - -  Tlr dx + lg Z + p + pl  = lg Z + p + pl  

Xb Xb a b 

(22) 

B I + B 2 = I ,  

where r is the hydraul ic  radius of the channel.  

Let us consider  conditions that make it possible to determine more precisely the form of the functions 

entering into Eq. (22) and the values of some of them on the boundaries  of the region of integration. To increase 

the efficiency of pulsation t reatment  of the medium the amount  of the "expe l l ed -abso rbed"  portion of it must be 

minimal, at least it must not exceed a tenth of the connecting channel  volume. Th e  pressure Pb in the section 

b - b  is close to atmospheric,  and the amount  of the vapor-gas component  in the mixture  under  such conditions is 

small. Therefore ,  we may  assume that  in pulsation t reatment  there  is no change in the mass of the vapor-gas phase 

due to mixture  motion in the connecting channel. The  quantities enter ing into Eq. (22) are functions of x and t, 

and for multiperiod oscillations the solution of system (22) is ra ther  laborous. System (22) can be simplified 

considerably with an accuracy sufficient for practice, if one is guided by to certain mean values of the quantities 
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over the channel length L = (Xa - X b ) .  Using the mean-value theorem with account for the foregoing, Eqs. (22) are 
transformed to 

L - -  
d (BI) (/~t21 > -- (]~tl2) 

dt  + (BlV)a - (BlV)b = L Pl  

d ((P2) (B2)) 
at - <i,2> - <M2,>, 

pIL ~ + pl (Z~) ~f- sign (v) + l g Z + P + p l  = l g Z + p + p l  , 
a b 

(23) 

(BI) + (B2) = 1. 

The notation in angular brackets relates the quantities to the mean values over the channel length, (X~) is the 
overall coefficient of hydraulic resistances in the continuous-flow circuit. The value of Va is calculated from Eq. 

(16). We consider that the parameters of the vapor-gas component are determined by the Clapeyron equation: 

(p) = (o2) R T 2 .  (24) 

In the case of adiabatic vapor generation, T2 should be assumed to be equal to the saturation temperature, T 2 = 
Ts((P)) [4 ]. The values of the quantities on the boundaries of the region of integration can be connected with their 

mean values by linear relations: 

Pa 2 (p) -- pb ,  vb 2 (v) -- v a ,  B la  2 ( B { ) - B l b ,  (25) 

where Bib  , Pb can be assumed to be constant and to be determined from the conditions at the cut of the connecting 
channel• It can also be assumed that the regime of motion in the channel is close to complete mixing. Then from 

the last two relations of (25) we have 

v b = ( v ) ,  B l a = ( B { )  when 

<V) <BI) 
v b -- B1 b , B la  = l when 

o ;  

( 0 > 0 .  

(25a) 

We assume that the vapor-gas phase in the connecting channel has the form of spherical bubbles and is charac- 

terized by their number N2 and the representative radius (R2). The latter can be found from the balance relation: 

(R2) = V [  4---~-n2) ' (26) 

where n2 = N 2 / L S  is the number density of the bubbles. The volume density of the rate of interphase transfer is 
determined according to the Her tz -Knudsen-Langmui r  formula: 

Q~/12)- 2-~fla L T? "5 ~-2 "5" i ~  ' 

(27) 

0.5  o.sj (~/21) 2 -- fla T2 

where the accommodation coefficient fla -< 0.8. Thus, the system of equations (16),  (23)-(27) consists of three 
ordinary differential equations of first order that enter into Eq. (23), which should be solved for d ( B 1 ) / d t ,  d ( p ) / d t  
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(using Eq. (24)) and d ( v ) / d t ,  and algebraic relations. The expenditure of thermal energy for vapor generation in 

the connecting channel is so small that it is admissible to assume the liquid-phase temperature to be T 1 = const. It 

can easily be verified that system (16), (23)-(27) turns out to be closed on introduction of the approximations T2 

-- Ts((P)), Ps -- p s ( T 1 )  and assignment of n2 and the initial value R20 (or B20). 

Let us now consider the case where initially there is a certain quantity of gas in the chamber and the level 

of the "rigid" medium at the time t = 0 has the mark Zo reckoned from the lower cut of the channel. If we assume 

that the gas parameters obey Eq. (24) and the cross section of the channel is constant, then the computational 

system of equations will have the form 

d v  1 

d t  - p Z  

V . 

H + p g H  - Pa - p g Z  - (Y~)  p ~ sign 

d Z  

d t  

L-Zo 
Pa = Pat) L --  Z " 

(28) 

Under the initial conditions 

t = O ,  v = Vo,  Z = Z O ,  Pa = PaO (29) 

we have a Cauchy problem. Here ~ -- I + 2 Z / d .  

Thus, we have mathematical models that describe the dynamics of the processes in facilities with a variable 

volume in the cases: A - of a degassed ("rigid") processed medium (1)-(16); B - of a medium with gas inclusions, 

shock phenomena in which are described by Eqs. (16), (23)-(26) at/~/ji = 0 (i, j - -  1, 2); C - of a medium with 

interphase transitions (evaporation-condensation),  shock phenomena in which occur according to Eqs. (16), (23)- 

(27); D - of a medium with a gas cavity in the chamber according to the additional equations (28) and (29). 

Model C is divided into two submodels: C1 (with the assumption of possibly complete vapor-phase 

condensation) and C2 (for the case of a binary gas having a noncondensing component (for example, a s t e a m - a i r  

system)). It should be emphasized that here relations are given that describe vibrational phenomena after the 

pressing of the membranes against the side surfaces of the chamber or after the limiting contact of the membranes 

in the middle plane of the chamber. The subcycles "connection to R" (expulsion of the medium from the chamber) 

and "connection to W" (intake of the medium into the chamber) are common to all the models; they are interpreted 

according to the dependences given in the beginning of the paper. 

To reveal the special features of each of the models enumerated above, we carried out numerical solutions 

of the corresponding systems of equations for a pulsating facility with the parameters given above, to which the 

initial conditions for the bubbles must be added: n = 10 t0 m -B, R20 -- 3.6.10 -5 m, fla = 0.04. The thermophysical 

parameters of steam were calculated according to the approximations given in [4 ]. 

As has already been noted, Fig. 2 presents the dynamics of the changes in the pressures and velocities 

according to "rigid" model A. The duration of the subcycle "connection to the vessel R" itself was 0.26 sec and the 

speed of expulsion of the medium from the chamber exceeded 12 m/sec. After complete expulsion of the liquid 

from the chamber, due to the limiting rigidity of the medium (the elasticity modulus Eme d "~ co) instantaneous 

deceleration of it occurs, which is accompanied by a pressure drop in the chamber to the level determined by the 

hydrostatic conditions. Since at the instant of deceleration the pressure of the working gas on the membrane pm 

was somewhat below the p ressu re /~  in the receiver R, "supercharging" of the gas to the value Proem = PR ocCUrs in 

about 0.01 sec. The equilibrium developed in this case in the system may persist indefinitely. After transition to 

the subcycle "connection to the vessel W" the conditions of hydrostatic equilibrium in the chamber and the 

connecting channel will be preserved until the working-gas pressure Proem falls to the value Pa ("blowing-off of the 

gas"), followed by speeding-up of the liquid characterized by a drop in the pressure in the chamber Pa virtually to 

the value Pw and by attainment of an intake velocity on the order of 7 m/sec. After the pressing of the membranes 
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characteristics of a pulser in the case of a liquid with gas 

to the side surfaces of the chamber and deceleration of the medium, smoothed by the elasticity of the rubber 

diaphragms, a pressure increase and then a decrease in it occur with a corresponding change in the direction of 

medium motion. The amplitudes of the changes in the pressure and velocity attain values that exceed 6.105 Pa and 

6 m/sec, respectively. The frequency of damped vibrations is/v ~ 20 Hz. It is natural that the limiting rigidity of 

the medium was responsible for the transition of pressures to the region of negative values. 

The dynamics of the vibrational processes will be quite different in the case of implementation of model B, 

presented in Fig. 3. Here, the medium processed was considered to contain air bubbles with a number density of 

inclusions n20 = l0 II m -3, an initial radius R20 = 1.68-10 - s  m, and a constant temperature T2 -- TI = 293 K. 

Equation (24) does not allow one to cross the zero threshold of pressure values. A region of very low pressures 
decreasing to 0.001- 105 Pa appears that is extended in time and subsequently converts into small zones of pulselike 

high pressures (up to 8.105 Pa). A comparison of the vibrational processes that followed the pressing of the 

membranes in the middle plane of the chamber (a time segment from t = 0.25 sec) and the pressing of the 

membranes to the side surfaces of the chamber (a time segment from t = 1.085 sec) shows distinctly the effect of 

the dynamic pressure of the medium at the instant of deceleration. The larger this pressure, the narrower the zones 
of pulsed pressures and the higher their greatest values. 

Since, as noted above, the "speeding-up" subcycles are identical for all the models, Fig. 4 demonstrates 

the change in the fundamental parameters of the vibrational phenomena respectively after the pressing of the 

membranes in the middle plane of the chamber and after the pressing of the membranes to the side surfaces of the 

chamber for model C2. It was assumed that the noncondensing portion of the gas-vapor phase 21420 = 4.18- 10 -3 

kg and that the water temperature was increased to the value TI = 383 K. Calculations showed that a characteristic 

feature of vapor generation in model C is a very slight decrease in the pressure (p) with respect to the saturation 

pressure Ps- Therefore, the lower threshold of pressures here is substantially higher than the lower threshold 
obtained in calculations by model B. 

The region of low pressures was also found to be more extended. A pronounced increase in the frequency 

of vibrations in the course of their damping was also established. The plot that characterizes the change in the 

function (Bl) presents the time segments of the durations of vapor generation, condensation, and compression- 

expansion of the noncondensing portion of the gas-vapor phase, denoted by v.g., cond., and c.-e., respectively. 
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Fig. 4. Dynamic characteristics of a pulser in the case of a medium with 

interphase transitions (evaporation-condensation) after the pressing of the 

membranes in the middle plane of the chamber (a) and against its side 

surfaces (b). 

Fig. 5. Dynamic characteristics of a pulser in the case of partial filhng of the 

chamber with gas after the pressing of the membranes in the middle plane of 

the chamber. 

Finally, Fig. 5 presents results of calculations by model D under the following initial conditions: t = 0, v 0 

= -12.52 m/sec, Z 0 -- 0.73 m, Pa0 = 2.89" 10 -5 Pa. As follows from Fig. 5, the presence of a comparatively small 

gas cavity (of the height h = L - Z0 = 0.02 m) confined to the upper portion of the facility leads to the development 

of highly intense dynamic effects. Here the calculated peak pressure attains values of the order of 107 Pa. True 

enough, the extreme values of the pressures damp very rapidly. With a decrease in the initial value Z 0, the damping 

effect of the gas increases (when Z 0 = 0.72 m, Pamax = 15- l0 s Pa; when Z0 = 0.70 m, Pamax = 4.7- 105 Pa). 

It follows from the foregoing that comparatively simple methods of variation of the properties of the medium 

treated lead to substantially different dynamic parameters of pulsating devices. Therefore, the mathematical models 

presented here make it possible to compose the treated media intentionally in order to obtain the final result 
required. 

NOTATION 

d, channel diameter, m; H, depth of immersion of the connecting channel into the medium, m; L, length 

of the connecting channel, m; E, elasticity modulus of the rubber, N/m2; Fro, Ff, volumetric density of the 
interphase-interaction force due to the additional mass and velocity nonequilibrium, respectively, N/m3; [, open 

area of the valve, m2; Gx, volumetric density of mass forces in the x direction, m/sec2; g = 9.81 m/sec2; h, thickness 
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of a membrane, m; Q, volumetric flow rate, m3/sec; k, adiabatic exponent; k (p), efficiency of pulse transfer; M, 
mass of a kilomole, kg/kmole; 2V/, volumetric density of the rate of interphase mass transfer, kg/(sec-m3); p, 

pressure, N/m2; Rme m, radius of a membrane, m; Rchan, radius of the connecting channel, m; S, open area of the 
channel, m2; T, temperature, K; Ts, saturation temperature, K; t, time, sec; V, volume between a membrane and 
the plane of its zero sagging, m3; V+, portion of the working volume of the chamber between the middle plane of 

the chamber and the plane of zero sagging, ma; V_, same between the side surface of the chamber and the plane 
of zero sagging, m3; VO, volume of the gas cavity between the valve and the chamber, ma; Vr, volume of the rubber 
membranes, m3; Vch, working volume of the chamber, m3; v, velocity, m/sec; x, longitudinal coordinate, m; Z, 
leveling height, m; R, gas constant, J / (kg.  K) i R~,, universal gas constant, J/(kmole.  K) ; B, indicator function of a 
phase; ~ ,  coefficients of hydraulic resistances; ;t, coefficient of hydraulic friction;/~, coefficient of discharge of the 
valve; p, density, kg/m3; 3, wall-friction stress, N /m 2. Subscripts: a, b, x, parameters in the cross sections a, b, x 

(see Fig. 1); ch, parameters in the chamber; mere, parameters of the gas acting on a membrane; reed, medium; i, 
j, number of a phase; i, j = 1, the liquid phase; i, j = 2, the gas-vapor phase; ij, parameters of the transition i -~ j 

on the phase interface ij. 
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